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Abstract 

Various climate impact studies need to generate estimates of climate variables at a given location based on values from 

other locations. It is well established fact that there are strong sensible physical linkages between global climate and 

local scale weather phenomenon. Therefore, empirical interpolation or downscaling has emerged as a prospective tool 

to relate atmospheric circulation patterns to surface variables for forecasting regional climate from GCM and RCM 

output dataset. In this paper, application of Artificial Neural Networks (ANNs) based soft computing model for 

empirical interpolation of precipitation in Himalayan region is attempted. This method uses ANNs to generate 

precipitation estimates for 11 districts of Uttarakhand state (India) given information from a lattice of surrounding 

locations. In the present paper, we have used Feed Forward Back Propagation (FFBP) algorithm to develop a 

Multilayer Perceptron ANN model for empirical downscaling of precipitation in Himalayan region. The model is 

developed using climate data of Climate Research Unit (CRU) and observed data for past 110 years (1901-2010). The 

robustness and suitability of the developed ANN model is verified by testing its applicability for 11 districts of 

Uttarakhand state. 80% of the data are used for training of the model and remain 20% are used for testing of the model.  

The performance evaluation of the model is tested by RMSE value. The study show that the model works quite well for 

climatic records of most of the district after bias correction. 

 

Keywords - Empirical downscaling, artificial neural networks (ANNs), feed forward back propagation (FBBP) 

algorithm, precipitation, climate change, Himalaya. 

 

 

1. Introduction 
In recent years, considerable efforts have been devoted to investigate the effects of large scale 

climate change on rainfall variability in different parts of the world. Statistical and multiple 

nonlinear regression methods have been used for predicting rainfall on regional scale. To assess 

the impact of climate change, scientists depend heavily on global circulation models (GCMs); 

spatial resolution of these models remains quite coarse and varies from 2.50x2.50 up to 80 x 100 

which is too coarse to assess the impacts of climate change on various ecosystems components at 

local and regional scale (Giorgi and Mearns, 1991; Clark, 1985). With such a coarse resolution, 

the regional and local details of the climate, influenced by spatial heterogeneities in the regional 

physiography particularly in the Himalaya, are lost. Therefore, there is need to convert the GCM 

outputs into a reliable data set with higher spatial resolution, with daily rainfall and temperature 

time series at scale of a watershed or region to which impacts of climate are to be investigated. 

Since, many impacts models require information at scales of 25 km or even less; therefore, to 

generate regional information on climate, interpolation of GCMs output to finer resolution is 

required. Even though GCMs can be run at high resolutions, still results from such models need 

to be downscaled for individual sites or locations for impact studies which enables construction of 

climate change scenarios for regional level at daily/ monthly time-scales.  
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1.1 Existing Downscaling and Interpolation Methods 
Variety of techniques, such as inverse distance weighted averages, splines, kriging, and radial 

basis functions, have been used for spatial interpolation (Hewitson and Crane, 1996). All these 

techniques use information present in known sample locations to interpolate values for other 

locations; yet, there are no criteria for prioritizing these techniques. The existing literature 

describes efforts made by various researchers (Giorgi and Mearns, 1991; Hewitson and Crane, 

1996; Joubert and Hewitson, 1997; Wilby and Wigley, 1997; Wilby et al., 1998) to downscale 

climate data generated by GCM simulations. Broadly, the downscaling techniques are divided 

into two major categories; process-based (dynamic) and empirical (statistical) approaches 

(Hewitson and Crane, 1996; Wilby and Wigley, 1997). Dynamic downscaling is the process of 

extracting local-scale information by developing regional climate models (RCMs) with the coarse 

GCM data as boundary conditions. This approach uses a fine-resolution climate model having a 

global or smaller domain to produce fine-scale information (Dickinson et al., 1989; Russo and 

Zack, 1997). Required boundary condition includes three-dimensional atmospheric fields at three-

hour or six-hour intervals. Though the dynamical downscaling produces a complete range of 

physically consistent meteorological outputs which are useful for research on physical 

mechanisms of the local scale climate change, but since these methods are computationally 

demanding, expensive and require large data sets, hence, may not be very practical (Giorgi and 

Mearns, 1991; Hewitson and Crane, 1996). 

 

Empirical interpolation or downscaling, on the other hand, starts with the hypothesis that regional 

climate is result of interplay of overall atmospheric and oceanic circulation as well as regional 

topography, land-sea distribution and land use (Von Storch et al., 2000). This approach uses 

empirical techniques to produce fine-scale climate information wherein relationships between 

regional-scale climate features and large-scale features are developed by analyzing observations 

(Wilby and Wigley, 2000). Key assumptions in this approach are that the future climate patterns 

can be derived from linear combinations of weather from previously observed patterns and 

changes predicted using coarse-resolution models are correct at fine spatial scales. Basically, it is 

a two step process: (i) development of relationship between local climate variables (e.g. 

temperature and precipitation) and large scale predictors (e.g. pressure fields) and (ii) application 

of such relationships to the output of GCM experiments to simulate climate characteristic at 

regional and local scale when suitable observed data are available to derive the relationship. To 

eliminate first order biases from these models delta change approach, where changes in quantities 

from a coarse simulation are added or multiplied to fine-scale historical climate data, is adopted 

(Imbert and Benestad, 2005). Statistical downscaling is computationally inexpensive, but 

produces results for only a few meteorological quantities such as precipitation and near-surface 

temperatures (Zorita and Storch, 1999).  

 

Empirical methods of downscaling generally use transfer functions to relate local conditions to 

large-scale climate features and are valid only within the range of the sample data (Katz and 

Parlange, 1976). Accuracy of these transfer functions is, therefore, not very perfect. The relation 

between synoptic-scale features and local climatological fields often nonlinear and changes with 

atmospheric circulation. These difficulties, along with inherent spatial dependencies, create need 

for complex mathematical specifications and estimation techniques (Bogardi et al., 1993; 

Matyasovsky et al., 1994). ANNs can approximate nonlinear relations and their derivatives 

without knowing the true nonlinear function; therefore are used to make accurate predictions for 

highly nonlinear systems (Werbos, 1974; Rumelhart et al., 1986; Fischer and Gopal, 1994; Gopal 

and Scuderi, 1995). Consistent with these capabilities, ANNs are being used to analyze and 
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produce climate information (Gardner and Dorling, 1998), investigate the effect of atmospheric 

circulation on local precipitation (Hewitson and Crane, 1996; Cavazos, 1997; Crane and 

Hewitson, 1998) develop transfer functions for predicting snowfall from grid scale information 

generated by GCMs (McGinnis, 1994), and estimate convective rainfall and recognize cloud 

merger from satellite data (Zhang and Scofield, 1994).  

 

Downscaling or interpolation techniques have been used in the past for deriving finer-scale 

weather information from numerical weather prediction models. Some more common approaches 

found in the literature are regression techniques or piecewise interpolations using a linear or 

nonlinear formulation. The simplest approach is to build multiple regression models relating free 

atmosphere grid point values to surface variables (Hewitson and Crane, 1996). An alternative to 

linear regression is to use piecewise linear or nonlinear interpolation such as “kriging" method. 

The potential of this approach has been demonstrated by (Biau et al., 1999) to relate local 

precipitation to large-scale pressure distributions. Another non-linear approach is based on 

artificial neural networks (ANNs), which are generally more powerful than other techniques, 

although the interpretation of the dynamical character of the relationships is less easy. 

Applications of ANN have successfully been implemented by (Hewitson and Crane, 1996; 

Cavazos, 1997; Wilby et al., 1998; Crane and Hewitson, 1998; McGinnis, 1994; and Weichert 

and Bürger, 1998). 

 

In Himalaya, topographic features play an important role to govern climate at regional level; 

therefore, information of climatic variable is required at micro level to study and assess impact of 

climate change on different sectors. So far, because of the complex topography and scarcity of 

observed data, very few studies have been carried out on dynamical/empirical downscaling of 

climate variables over the Himalayan region. With the hypothesis that ANN technique may 

address many of these difficulties and therefore may be useful to downscale GCM output (Hornik 

et al., 1989), this study is attempted with an objective to evaluate potential of ANNs to downscale 

the precipitation in Himalaya. In this study ANNs, a soft computing technique, is used for 

empirical downscaling and spatial interpolation of precipitation to generate precipitation 

estimates for 11 districts of Uttarakhand state in North-Western Himalaya. The hypothesis is 

addressed by quantifying relationship between the CRU data and observed rainfall data in 

different districts of Uttarakhand State of India. In the present paper, Feed Forward Back 

Propagation (FBBP) approach is used to develop a Multilayer Perceptron ANN model for 

empirical downscaling of precipitation.  

 

Evaluation of this paper is described in six sections. Section 2 describes brief about study area 

and its climate. Section 3 describes the methodology that demonstrates the ability of ANNs to 

interpolate/downscaling of precipitation with special focus on dataset used and training and 

testing of ANN model. Section 4 encompasses results and discussion part of the paper. Based on 

the potential indicated by the results in section 4, section 5 describes several methodological 

issues that confront analysts who seek to use ANNs to downscale output from GCMs along with 

future research areas. 

 

2. Study Area 

2.1 Physiographic Features 
Uttarakhand state, situated on the southern slope of Himalayas, has geographical extent of 

28043’45” to 31028’10” N latitude and 77034’5”to 8102’25” E longitude. The state has13 districts 

and total geographical area of approximately 53, 483 km2 which is 1.63% of the total area of the 
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country. The state borders with Nepal and Tibet on the east, central Himalayas on the north, and 

Haryana and Himachal Pradesh on northwest (Fig. 1). Geographically the state has four Mountain 

zones, namely; foot hills, lesser Himalaya, Greater Himalaya and Trans-Himalaya. These 

mountain ranges are the store house of perpetual snow and glaciers and have gifted Northern 

India a perennial river the mighty Ganges and its tributaries namely: Bhagirathi, Alaknanda, 

Yamuna, Sharda, Gori and Dhauli. Geography of Uttarakhand is so much varied that it has been 

geographically divided into two parts, the western half is known as Garhwal and the eastern 

region as Kumaun (India State of Forest Report, 2011). 

 

 
 

Fig.1. Location of study area  

 

2.2 Climate 
Climate of Uttarakhand state is distinguished in its two diverse divisions; the major hilly terrain 

and the smaller plains. The state has temperate climate except in the plain areas where climate is 

tropical. The northern part of the state, enveloped by the mighty Himalaya, reflect complete traits 

of Himalayan climate and exert great influence on monsoon and rainfall patterns. In the southern 

foothills, the average summer temperatures vary between 300C to 400C. In middle Himalaya, the 

summer temperature is usually around 200C to 300C; however winters temperature sometime 

drops below the freezing point. The high altitude areas of Himalaya (at more than 4000m), being 

covered by snow and ice, have cold and dry weather throughout the year. These areas become 

inaccessible during October to April due to heavy snowfall. The eastern edges of the Himalayan 

ranges are subject to heavy rainfall while the western division is relatively dry. However, in 

Gangetic plains, summers are extremely hot and humid with temperature crossing the 400C mark 

and winters are relatively quite cold with temperatures dipping below 50C at times. The climate 

and vegetation of different regions of this state vary with the altitude of its location; the climate 

also varies within the mountains in accordance with the altitude. 

 

3. Methodology 

3.1 Data Used 
For the present study we have used monthly precipitation data of past 110 years (1901-2010) 

available from Climate Research Unit (CRU TS2.1) for 1901-2002 and observed precipitation 

data for 2003-2010. The CRU TS2.1 data, from the Tyndall Centre for Climate Change Research, 

School of Environmental Sciences, University of East Anglia, UK, consists of interpolated 
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(0.50x0.50 lat-long grid) global monthly rainfall, temperature, relative humidity, and cloud cover. 

The CRU precipitation data for all 11 districts of Uttarakhand state (except for Bageshwar and 

Rudraprayag for which data were not available) are used. Further, observed rainfall data (for 

2003-2010) for all the districts under study is obtained from Indian Meteorological Department 

(IMD), Pune, India. For few districts primary rainfall data generated by the Institute for 5 years 

(i.e. 2004-2009) under the Participation of youth in Real-time/ field Observation to Benefit the 

Education in Uttarakhand state (U-PROBE) project supported by the Department of Science and 

Technology (DST), Government of India is also used. This project was coordinated by the 

Institute in collaboration with different schools, universities, research organizations and state 

Government. Brief description of dataset used in the present study is given in Table1. 

 
Source Time Slice Name of station/ District Purpose  Spatial scale/ 

resolution  

Climate Research  

Unit (CRU), UK 

1901-2002 All 11 districts of Uttarakhand 

(except Bageshwar and 

Rudraprayag) 

Development & training 

of ANN model 

(0.50 x 0.50 grid) 

IMD, Pune (India) 2004-2010  All 11 districts of Uttarakhand 
(except Bageshwar and 

Rudraprayag)  

Testing of developed 
ANN model 

Observed station data 

U-PROBE (DST, 
India) 

2004-2009 Almora and Pithoragarh Gap filling & testing of 
developed model 

Observed station data 

 

Table 1. Dataset used in the present study 

 

3.2 Pre-Processing of Dataset 
The CRU meteorological data for all 11 districts of Uttarakhand state is extraycted from the data 

generated for the entire world by Mitchell and Jones (2005) using a simple approximation and 

linear averaging from the girded data of CRU dataset. The IMD data set are acquired from 

different stations in study district and averaged for entire district. Bias correction is done using 

observed U-PROBE data and regression model described in section 3.5. Data gaps in IMD 

dataset, if any, are filled using observed U-PROBE data for that particular district. Further, gaps 

in the U-PROBE dataset are filled using linear interpolation methods for which mathematical 

models were developed to estimate the missing values. As required for development of model, 

complete data set is divided into two parts: (i) 80% data are used for training of the developed 

ANN model, and (ii) remaining 20% data are used for testing/validation of the model. Dataset for 

training and testing are created by random separation process from entire data set. The CRU data 

are used for training of the developed ANN model whereas observed data from IMD and U-

PROBE are used for validation of the developed model. 
 

3.3 Training  of ANN Model 
To investigate potential of ANNs for empirical downscaling of precipitation, ANN model is 

trained on 80% dataset to predict precipitation for 11 different districts of the study area. The 

ANNs used in the present study are Multilayer Perceptron (MLP) networks (Fig. 2). 
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Fig. 2. Architeture for ANN model 

 

MLP, a feed forward network, implements mappings from the input pattern space to the output 

space. In MLP, information is transmitted through the connections between its neurons which 

cover its initial and past states. A MLP can be trained with the standard back propagation 

algorithm and mathematically can be expressed as 
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Where, t denotes a discrete time, R is the number of input signals, S1 and S2 are the numbers of 

hidden and output neurons respectively, 
1

,ijw  and 
2

, jkw are the weight matrices of hidden and 

output layers, 
1

jb and 
2

kb   are the bias vectors of hidden and output layers, pi(t) is the input matrix, 

a1 and a2 are the output vectors of the hidden and output layers, and F and G are the activation 

functions of the hidden and output layers, respectively. Tan-sigmoid transfer function is used for 

development and training of Networks. The Feed-forward Back Propagation Network (FBPN) is 

used to interpolate/downscale precipitation which is expressed mathematically as  

 

kkkk gXX                                                                                                                          (3) 

 

where, Xk is the vector of current weight and biases, αk is current gradient, and gk is the learning 

rate. We train back propagation neural network to learn the relation between input and output 

vectors. During the training phase, connection weights are adjusted to minimize root mean square 

error (RMSE) between desired outputs estimated from the ANN model. Weights of the neural 

network are adjusted as follows: 

 

 )()()( ,,, oldwOoldwneww jijijiji                                                                       (4) 
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Where wi,j = weight associated with the jth node in the ith layer, β= momentum factor, α=learning 

rate, Oj=output from jth node, δi= error signal= (ti-Oj)Oj(1-Oj), ti= observed value for the ith output 

node. 

 

  
 

Fig. 3. Training of the ANN model  

 

 

 
 

Fig. 4. Performance of ANN model during training of the model  

 

Initially, four different ANN models are developed by varying weights, changing transfer 

function and using different set of neurons. The RMSE reaches its minimum at 200 iterations at 

16 ecpoch (Fig. 3). Beyond this point increasing the number of iterations does not change the 
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RMSE significantly. Based on the results obtained during training phase best performing model is 

adopted for training of the network. Performance of training of ANN model is depicted in Fig. 4, 

which shows that the ANN has been trained quite nicely. The suitability of training of ANNs is 

illustrated by correlation values obtained during different stages, namely training (r=0.99), 

validation (r=0.79), testing (r=0.99), and overall (r=0.98). 
 

3.4 Testing and performance evaluation of developed ANN model  
Testing of the developed ANNs is carried out on remaining 20% of dataset and performance 

evaluation of developed ANNs is tested on target output. The target output and ANN model 

output are plotted in Fig. 5(a-i) for comparison purpose and results of performance evaluation of 

the developed model are presented in Table 2. Initially, for a few districts, we found 

comparatively small and non-significant correlation values and consequently the higher RMSE 

value this may be attributed to infrequent occurrence of high precipitation month and gaps in the 

training data set. 

 

Model  Hidden Nodes  Value of correlation coefficient (r ) MSE  

Training  Validation  Training  Validation  

ANN-M1 2 0.78 0.09 23097.62 23485.64 

ANN-M2 3 0.83 0.53 8999.05 13996.86 

ANN-M3 4 0.80 0.21 10533.53 16745.13 

ANN-M4 5 0.88 0.36 1723.56 18249.41 

ANN-M5 6 0.97 0.04 11345.34 18342.43 

 

Table 2. Performance statistics for various ANN models 

 

In such a situation, to reduce error and improve model efficiency, we performed bias corrections 

to reproduce improved annual precipitation time series for only those districts/stations for which 

the correlation values are relatively poor and non-significant and RMSE values are comparatively 

higher (Fig. 6). In the present study following equation is used for bias correction (Snell, 2000). 

 

jijiji RR ,,,
ˆ                                                                                                                      (5) 

 

Where, jiR ,  is historical value of precipitation at station i in the year j, α and β are regression 

coefficients, jiR ,
ˆ  value of precipitation generated by ANN, and ji,  is random error. The 

developed model is then applied on improved time series for spatial interpolation/downscaling. 

After performing bias correction, value of the correlation coefficient (r) improved significantly 

from 0.76 to 0.92 for Champawat, 0.70 to 0.90 for Dehradun, 0.61 to 0.89 for Pauri Garhwal, and 

0.55 to 0.84 for U. S. Nagar. The bias correction, applied to the original times series, 

consequently also improved root mean square error values for the abovementioned districts 

significantly. The R2 values are then calculated for improved values of correlation coefficient. 

Improved performance of ANN model is depicted in Table 3 wherein values of r and RMSE, 

obtained after bias correction, are presented. 
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(a) Almora (r=0.98)      (b) Chamoli (r=0.97)  
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(c) Champawat (r=0.7)     (d) Dehradun (r=0.9) 
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(e) Haridwar (r=0.9)      (f) Nainital (r=0.87) 
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(g) Pauri Garhwal (r=0.61)     (h) Pithoragarh (r=0.86) 
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(i) Tehri Garhwal (r=0.6)     (j) Uttarkashi (r=0.82) 

 

Fig. 5 (a-j). Testing of developed ANN Model for various districts of Uttarakhand State  

 

 
 

Fig. 6. Error estimate curve for the developed ANN model 
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S. No. District/Station Correlation 

coefficient (r) 

Value of r (after 

bias correction) 

R2 RMSE RMSE (after bias correction) 

1 Almora 0.98 0.98 0.96 74.5 74.5 

2 Chamoli 0.97 0.97 0.94 66.2 66.2 

3 Champawat 0.76 0.92 0.84 97.7 84.7 

4 Dehradun 0.70 0.90 0.81 97.6 83.8 

5 Haridwar 0.90 0.90 0.81 82.7 82.7 

6 Nainital 0.87 0.87 0.75 81.6 81.6 

7 Pauri Garhwal 0.61 0.89 0.79 99.6 84.2 

8 Pithoragarh 0.86 0.86 0.73 66.1 66.1 

9 Tehri Garhwal 0.96 0.96 0.92 56.4 56.4 

10 Uttarkashi 0.82 0.82 0.67 68.8 68.8 

11 U S Nagar 0.55 0.84 0.70 98.5 82.3 

 

Table 3. Improved performance evaluation of ANN model 

 

4. Results and Discussion 
To investigate suitability of ANNs for empirical interpolation of precipitation Multilayer 

Perceptron (MLP) ANN model is trained over CRU climate data for 11 districts of Uttarakhand 

state in India. The complete data set is divided into two parts; 80% data are used for training/ 

calibration and remaining 20% data are used for validation/testing of the model. Four ANN 

models with different training steps, transfer function, neurons and returns are developed and 

their performance was compared. Finally, a 3-layer MLP model with 2 neurons and minimum 

RMSE is selected and results of the best performing model are only presented in this study. 

Minimum RMSE is obtained at 200 iterations at 16 ecpoch and hence the best model is adopted 

for training of the network. Performance and suitability of ANN is illustrated by correlation 

coefficient (r) values, between time series of individual district and estimated through ANNs, 

obtained during different stages of the model testing. The estimated values of r for different 

districts show that the model performs nicely during validation phase also. However, for few 

districts higher peaks are not properly captured by the developed model. This may be due to data 

gaps in the observed rainfall data which were filled by interpolation and comparatively less 

observed data set for training of the model. Therefore, the linearly interpolated values may not be 

captured by the ANNs trained over the dataset generated from CRU grid dataset and creates noise 

while applying on the testing dataset. Also, if the training data is long and contains noise, the 

ANN begins to fit the noise present in the training data. In such cases, when an over trained ANN 

is presented with data that it has not yet seen (i.e. data with the same relationship as training data 

but new and different noise), then its performance becomes lower in comparison to the situation 

when it has only learned the actual relationship during training. 

 

The results show that ANNs account for much of the temporal and spatial variation in 

precipitation across all districts. Performance of ANNs is found low for Uttarkashi district (i.e. 

station 10), where it accounts for 67% of the variation over time, and best for Almora district (i.e. 

station 1), where it accounts for 96% of the variation over time. The model performance was 

further improved after carrying out the bias correction as described in section 3.5. RMSE values 

are found consistent with the performance of developed ANNs as indicated by the values for R2 

(Table 2). The maximum RMSE values of ANNs is found for Puari Garhwal (99.6 mm) followed 

by US Nagar (98.5 mm), Champawat (97.7 mm) and Dehradun (97.6 mm). Similarly, relatively 

minimum RMSE values are obtained for Tehri Garhwal (56.4 mm), Pithoragarh (66.1 mm), and 

Chamoli (66.2 mm). The most accurate predictions are obtained for the districts with uniform 

variation (i.e. having comparatively less difference between maximum and minimum totals) and 

moderate amount of precipitation. This suggests that the developed ANN model have learned the 
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patterns that are common in the data, but not able to locate patterns associated with values of 

precipitation that deviate from the mean monthly precipitation significantly. This may be due to 

the gaps in training data set and infrequent occurrence of high precipitation months. The errors in 

estimated values may be also linked to inconsistencies between predictors and predictand data 

used as the “observed data”, suggesting the need for improving observed records and reanalysis 

data sets in the Himalayas. 

 

The results of this analysis reflects that the developed ANN model have captured pattern of 

training data set and hence can be useful to interpolate precipitation data from a grid structure to 

interior points with a fairly high degree of accuracy. The results plotted in Fig. 5(a-i), where 

values are interpolated using the MLP ANN model are presented, indicate that the interpolations 

generated by ANN differ in the degree of systematic prediction. There could be several possible 

reasons for the under/over fitting of the developed model, such as violation of non-linearity 

assumptions, synoptic classification that produced the predictors, lack of information required for 

atmospheric stability (e.g., atmospheric pressure, vertical vorticity of wind), or a relative measure 

of humidity as input variables. This implies that the interpolations can be improved by including 

atmospheric circulation patterns (CPs) in the model. Also, training of the ANNs can be improved 

by representing the temporal structure of the data in a more realistic manner wherein 

autoregressive structure can be integrated with spatial structure. An autoregressive structure 

increases the number of input nodes because values for precipitation at the output stations depend 

on current and previous values for precipitation. Therefore, the interpolation may be improved by 

more temporal representations and by addition of other atmospheric input variables. These 

modifications can be implemented with relatively little change in the overall ANN architecture. 

 

5. Conclusion  
During past few decades, interpolation of climate variables has become an established tool to 

relate atmospheric circulation to surface variables. It is well established fact that there are strong 

sensible physical linkages between global climate and local scale weather phenomenon. 

Therefore, interpolation or downscaling has emerged as a prospective tool to relate atmospheric 

circulation patterns to surface variables for forecasting the regional climate from global 

circulation data. A variety of empirical downscaling techniques (such as inverse distance 

weighted averages, splines, kriging, and radial basis functions) have been developed for spatial 

interpolation; these methods vary in complexity and use information present in known sample 

locations to interpolate values for other locations. Relation between synoptic-scale features and 

local climatological fields often is highly nonlinear and changes with atmospheric circulation. 

These difficulties along with spatial dependencies, that are inherent to many climatological fields, 

create need for complex mathematical specifications and estimation techniques. Also, it remains 

uncertain whether the empirical approaches can be applied to non-stationarity of climate change. 

ANNs having property to approximate nonlinear relations and their derivatives without knowing 

the true nonlinear function, may address many of these difficulties and therefore can be a useful 

tool to interpolate climate model outputs. The mathematical flexibility of ANNs offers 

opportunity to make use of this technique for empirical interpolation of climate variables. In the 

present paper, application of ANNs for empirical downscaling and spatial interpolation of 

precipitation in Himalaya is attempted. Here we have used FBBP algorithm to develop an MLP 

ANN model for empirical interpolation or downscaling of precipitation by generating 

precipitation estimates for 11 districts of Uttarakhand state in India. The developed model is 

applied on climate data of past 110 years (1901-2010) and robustness/suitability of the ANN-

model is verified. 80% of the data are used for training of the model and remain 20% are used for 
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testing of the model.  The performance evaluation of the model is tested by RMSE value. The 

results show that the developed ANN model works quite well for most of the district after bias 

correction and values r for different districts shows that the model performs nicely during testing 

phase. However, for few districts the higher peaks are not captured properly by the developed 

model which may be attributed to data gaps in the observed dataset and comparatively small time 

series of observed data set for training of developed ANNs. The present study also paves the way 

for further modifications in available techniques and provides opportunities for development of 

robust techniques for empirical interpolation or downscaling of climate variables in Himalayan 

region. With advancement in computational techniques, the possibility of greater use and 

refinement of these techniques with introduction of new methods has also increased. One possible 

future research area is integration of physical processes that govern the relationship between the 

atmosphere and surface variables in empirical interpolation or downscaling models. Identification 

of temporal and spatial scales at which these relationships remain stable, and development of 

better predictor selection criteria could be other possible areas of research in this direction. 
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